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ABSTRACT [re

Consideration is given to a new class of problems dealing
with an o?timal design of inhomogeneous glate during d¥namic pene-
tration of the rigid indenter. The quali K criterion of the pro-
cess is defined by the specific mass of the target, which absorbs
the given kinetic energy of the indenter. Parameters of control
are expressed in terms of mechanical characteristics, i.e. distri-
bution of density p and the related hardness H across the plate
thickness. The maximum principle of Pontryagin are used to search
for piece-wise continuous control function. With consideration of
impact conditions and characteristics for a given class of mate-
rial an optimal target structure criterion has been estimated for
engineering application.

INTRODUCTION

The problem of searching for mechanical characteristics of
inhomogeneous plate subject to impact of a rigid body has been
stated first in [1) in Lhe framework of theory of optimal control.
This stud emplogs Pontryagin principle of maximum {2] to obtain
an optimal structure for "a plate with minimal thickness and
rescribed sgecific mass. At present a considerable attention is
ocused on the problem of structure optimization as applied to the
case of inhomogeneous glate of a minimal sgecific mass using both
f

linear HCp) = 4p + B [3] and nonlinear HCp) = o(p> [4] relations.
An approximate approach to the analysis of penetration process,
based on the empirical relation [5]1 allows to obtain rather simple

criteria for structure optimization.
ANALYSIS
1. Formulation of the problem.

According to the apglied theory of the plate specific resis-
tance p , penetration of the rigid indenter can be expressed [8]

as
= H + Rpv® (1.1

where H is dynamic hardness; k is the shape factor of the indenter
head (in case of a tapered head k=sin®a, o is a half angle of the
cone ogening); v is the current penetration rate.

The equation of motion forLlndenter is given as [3]

(1/20M dCuPdsdl = =2n | pCx, LD rCEXGr(Ed/3¢ df, (1.2
Q

where L is the current penetration depth; r(£) is the expression
Eor generating line of axisymmetrical indenter; ¢ = L-x 1is the J
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Foordinate relative to the tip of the indenter (fig.1).
Distributions of density and hardness are assumed to meet the
following requirements
e, Q = { p(x: p s Xx2 s p, (xc [O,LkJJ >,

H<X, & = { HOxO: H < H(xD = H, (x< [O,Lk]) } (1.3

We shall restrict ourselves to a class of materials for which
there exists a one-to-one magping p of the set Q in the set ¥
H=olp2, p3H, p,» H, with 8ps/8p > 0. According to the quality

criterion stated below, materials inconsistent with the latter
conditions are considered inadequate. Further it is assumed that
each of the materials is plastic enough and impact velocities lie
within the range, in which application of the relation (1.2)
proved to be valid.

The boundary conditions for (1.2) imply that the indenter
moves with the initial penetration rate u(h=0) = v, and reaches

some unknown finite penetration depth Lk for which uCLk) = 0.

We shall concentrate on the case with the Elate thickness being
equal to the finite penetration depth & = c

Specific mass of such target is taken as the principle crite-

rion of quality L,
J = min { 200 dx} (1.4)
PR fo

2. Conical indenter. Linear relation H = o(p).

Let us consider the technique of agglying the maximum prin-
ciple [2] to a number of particular Ero ems. Within the framework
of theory of optimal_control the problem ma¥ be expressed in the
form of T {y'= v®, y? y*) 1is the vector of phase coordinates, ¢
= L 1is the time analog )

dy'zdt ="-E [({/2)B t® + (A4 + ky')y?],

ggz/dt = y?, ady*sdt = p, (e. 1
where E = (4n/M> (tgeO?®.
In the following it is reascnable to introduce additional

phase coordinates yZ; Y3, since the right side of the equation of
motion involves an explicit form of functional (1.3), leading to
condition dy_sdt= -6h/3y°# 0.

The mapping H = ¢(p) is assumed in the form of linear appro-

¥Ximation
HCpd = 4p(xJ + B,
A= (Hz— Hx)/(pz- Px)' = (H!p2 - Hsz)/(/’z' Plj’ (2.2)

At the initial moment of time the vector of phase coordinates
remains fixed t = 0 : y'=y , y*= y*= 0. The finite vector value

ﬁk belongs to a smooth, two-dimensional variety Sk Euclidean space

with dimension n = 3
5, Fk(y;, y;, y;) = yL =0 (2.3
The condition of transversality for the vector of conjugate vari-

ables y yields two relations

]

]
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t=t, : y,=0 w =0 (2.7

2 3
The equation for the conjugate variables takes the form

dy sdt=ERy®y,, dy, /dt=ECA + ky'Dy,, dy sdt=y, (2.5

Optimization of the process 0°,y° requires the existence of

such nontrivial constant woS 0 and vector-function p(t) with
will allow to meet the maximum condition [2]_
max hCwCtl),y(td,t,p) = hCyCtd,y(td, t,p%> (2.6

p<
and transversality condition
.y s O - n
RCPCL 2, 9Ct, 00t (LD = Z y (g 2.7

where § = {o, dy?/dt, dy®/dt }|t=t .
k

N According to (2.4) the right-hand side of (2.7 is equal
0 zero.
Hamiltonian operator is expressed as

ho= Cy +y 0p - wiE[(I/ZJBtz +CA + Ry )yZ] ryy @

Integration of the system (2.5) combined with conditions
(2.4), (2.7) enables one to define behavior of Hamiltonian h in
terms of linear function of p with coefficient & =y +y_.

3. Cylindrical indenter with a conic head of the height 6.
Linear relation H = o(pJ.

The system of differential equations describing the process
is divided into two parts:

2 { -E [C(1/2)B t2 + (4 + ky'Iy?], t < 6
v /dt =
-E [C1/2)B 6% + (4 + ky'IVY%1, t 26, €3.1)
yi, Lt <6 Lt), t <6
2 - 32 -
dy®sdt = { . _ . dy*sdt = { _ _ N
y 6pCt-62, t 246, xXt) - p(t-62, t 26,

Hamiltonian operator takes the form

ho= Cy rp dCt) - le[(UZJBtZ +CA + Ry )y"] vy y®, for t <6

h

Cy +y 2pCtd) - (6y, - Y Op(t=6 + vy -

(3.2)
le[CI/Z)de +CA + ky' Jyz] L for t 26

The eguations for the conjugate variables is expressed as
(2.5) ytel0,t, 1. It is assumed that the value y, 1is such t.hatJ

L
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Fondition Lk> ¢ is satisfied automatically.

4. gyltndrtcal indenter with a flat end-face.
onlinear relation H = o{pD.

The equation of motion for indenter and Hamiltonian are writ-
ten, respectively as

dy' /dt = -E Lp(p) + py'l, (4.1)

h=yp-yElplp) + py'] (4.2)

Using differential equation for conjugate variables and
transversality condition gives:
h=pd + KPR, (4.3

t
¢ =1+y'fZ, & =fZ, Z=exp (-E [ *pdr (4.4)
t

For a piecewise-linear relation o(p) (see fig.2) Hamiltonian
is transformed to a piecewise-linear function p with the slope &

: { -1 + (Zpk/(B+Ap&J)(A+y‘), pg[pl,p*l
~1 + (Zp /(B +Dp, 2X(D+'),  plp,,p.] (4.5
For nonlinear relation o(pl=B+4p" C4>0,n>0) Hamiltonian reduces to
h = p3Cpd + B@z, ® =1 + fnZ(y‘+ A" 1), f.= pk/CB+Ap£) (4.6

The conditions assumed for existence of continuous solutions
may be expressed as

(6h/3p) P Anéz(pPJ“—‘ =0 (4.7
p=p
(Fh/3p°%) = A n(n-12% (p°2""2% ¢ 0 (4.8
pzpo n 2
Following (4.7) one gets:
m
&P = ‘[—Qt/(AnQZJ . m= 1/Cn-1) (4.9)
Differentiation of (4.9), using (4.1) gives

8c° /3L = -GCp°)? [1 + B/CACI-nD) (p°o" ] 6 = E/n (4.10)

RESULTS

Without goin? into details we shall examine some qualitative
results obtained for a number of special cases.

1. Linear relation H = p(p).
From the analysis of the system (2.1),(2.5),(2.8) we can draw

the following qualitative conclusions :
L (1) There is an interval Ct*,Lkl in which the optimal functi-

|
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n has the form of p° = p, l.e the rear layer should be made ofw

more light and less hardness materials,
(i1) The function p° = p, 1s optimal within the entire

interval Cto,tk], if Bz 0,

(iii) In the case of B < 0 the structure of target should be
double layer with the front lay being made of hard and heavy mate-
rial. In this case a relay-type control is realized.

Similar results have been obtained for the case (3.1),(3.2).
A general phase diagram of the optimal structure is shown in

fig. 3.
Here v is the velocity at which I_k = 6, where § the height

of the indenter head. It is seen that the structure largely de-
pends on the parameter B. If the specific hardness Q= H/S is
assumed the measure of material quality, then, according to (2.2)

the condition B<O identifies the maximum quality of heavy material
{p, H 2. In this case a double layer plate is an optimal structure

for a target. Contrary, when v > v an optimal structure may be
represented by a homogeneous plate made from a light material.

2. Nonlinear relation H = o{pJ.

(i) For a piece-wise linear function H(p) as plotted in
fig.a the problem is solved for three different materials. The
"phase-diagram™ of the optimal structure is shown in fig.4, where
o = -(px/pé)(pé-p*)/(p*-pl), X = (Lk/d)z—i. As it follows from the

observable scale effect, the dptimal structure for a given set of
materials CB,B‘) depends on the relation Lk/é.

(ii) For nonlinear dependence H(p) the function of the opti-
mal control may not include discontinuities. Inequality (4.8) is
valid for n <" in the neighborhood of (L*,tk], o<t <t . The

procedure of 8ualitative estimating the type of solution to the
equation (4.10) may be as follows. The first approximation (the
expression in square brackets in (4.10) _is constant) follows from

ap° /3t = -G(p°d* as  (p°)' = p  + GCt-t ) . This solution

is found to be exact for B =0. The second approximalion has a more
complicated form. The results are shown in fig.5. The position
(coordinate) of the point t_ is calculated numerically and may

coincide with the starting point of the process.

The results of present investigation allow to make a prompt
qualitative estimation of the optimal target structure. The best
ratio of layers in a double-layer target may be calculated
numerically by solving the equation of motion for indenter.
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Fig. 3.
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